Spinal cord injury-induced astrocyte migration and glial scar formation: effects of magnetic stimulation frequency.
نویسندگان
چکیده
The effects of magnetic stimulation on spinal cord injury-induced migration of white matter astrocytes were studied using an established animal model. Ethidium bromide was injected into the dorsal spinal cord funiculus of adult Sprague-Dawley rats on the left side at T10-11. Animals then received 1.52 Tesla-pulsed magnetic stimulation for 5 min at different frequencies (0-20 Hz) for 14 consecutive days. Selected animals received the non-competitive MEK1/2 inhibitor U0126 (10 microM), prior to stimulation at 10 Hz. Lesion volumes were measured in hematoxylin/eosin-stained sections. Expression of glial fibrillary acidic protein (GFAP), microtubule associated protein-2 (MAP-2) and extra-cellular signal-regulated kinasel/2 (ERK1/2) near the epicenter of injury was examined by Western blotting with quantification using an image analysis system. Lesion volumes decreased and GFAP and p-ERK1/2 expression increased with increasing magnetic stimulation frequency (0-10 Hz). MAP-2 expression was not affected at any frequency. Pretreatment with U0126 reduced GFAP and ERK1/2 expression and increased lesion volumes in response to stimulation at 10 Hz. It is concluded that magnetic stimulation increases the migration of astrocytes to spinal cord lesions. Activation of the ERK1/2 signaling pathway is proposed to mediate astrocyte migration and glial scar formation in response to spinal cord injury.
منابع مشابه
Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord.
In the injured spinal cord, a glial scar forms and becomes a major obstacle to axonal regeneration. Formation of the glial scar involves migration of astrocytes toward the lesion. Matrix metalloproteinases (MMPs), including MMP-9 and MMP-2, govern cell migration through their ability to degrade constituents of the extracellular matrix. Although MMP-9 is expressed in reactive astrocytes, its inv...
متن کاملReactive Astrocytes in Glial Scar Attract Olfactory Ensheathing Cells Migration by Secreted TNF-α in Spinal Cord Lesion of Rat
BACKGROUND After spinal cord injury (SCI), the formation of glial scar contributes to the failure of injured adult axons to regenerate past the lesion. Increasing evidence indicates that olfactory ensheathing cells (OECs) implanted into spinal cord are found to migrate into the lesion site and induce axons regeneration beyond glial scar and resumption of functions. However, little is known abou...
متن کاملP62: The Effect of Valproic Acid Therapy on the Glial Scar Formation after Acute Spinal Cord Injury Fallowing by Motor Vehicle Traffic Crashes
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملTransforming growth factor α transforms astrocytes to a growth-supportive phenotype after spinal cord injury.
Astrocytes are both detrimental and beneficial for repair and recovery after spinal cord injury (SCI). These dynamic cells are primary contributors to the growth-inhibitory glial scar, yet they are also neuroprotective and can form growth-supportive bridges on which axons traverse. We have shown that intrathecal administration of transforming growth factor α (TGFα) to the contused mouse spinal ...
متن کاملCellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma.
Post-traumatic cystic cavitation, in which the size and severity of a CNS injury progress from a small area of direct trauma to a greatly enlarged secondary injury surrounded by glial scar tissue, is a poorly understood complication of damage to the brain and spinal cord. Using minimally invasive techniques to avoid primary physical injury, this study demonstrates in vivo that inflammatory proc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Indian journal of biochemistry & biophysics
دوره 47 6 شماره
صفحات -
تاریخ انتشار 2010